Global Health

OWID presents work from many different people and organizations. When citing this entry, please also cite the original data source. This entry can be cited as:

Esteban Ortiz-Ospina and Max Roser (2017) – ‘Global Health’. Published online at Retrieved from: [Online Resource]

This is a ‘meta-entry’. All visualizations and data discussed here are also discussed in more detail in other, more specific data entries on the topic of health. In what follows we provide links to these other entries, as we cover the corresponding topics. These include Life Expectancy, Child Mortality, Healthcare Provision, Health Inequality, among other.

Health is a fundamental aspect of quality of life, not only because being free from illness or injury directly affects our capacity to enjoy life, but also because health indirectly affects our capacity to produce and consume other valuable goods and services.

In this entry we begin by providing an overview of the available empirical evidence on aggregate health outcomes, focusing on lon-run cross-country data from mortality and morbidity tables; and then provide an analysis of available evidence on health determinants, focusing specifically on the returns to macro healthcare investments.

Life expectancy is the most commonly used measure used to describe a population’s health. Historical data shows that global life expectancy has increased drastically over the last couple of centuries, with substantial long-run improvements in all countries around the world. In fact, recent life expectancy gains in developing countries have helped reduce global inequalities. However, despite recent progress towards long-run cross-country convergence, there are still huge differences that have to be addressed: people in sub-Saharan Africa have a life expectancy of less than 60 years, compared to 80 years in countries such as Japan.

Historical reductions in child mortality and maternal mortality have been crucial to improving life expectancy around the world. But also for these two measures of health we observe large remaining inequalities: low-income countries still have, on average, child mortality rates that are more than ten times higher than those in high-income countries. We show that similarly large gaps remain for other measures of health, including recent burden-of-disease estimates.

A growing body of empirical research suggests that, at a macro level, health outcomes are highly responsive to healthcare investments. Moreover, as one would expect, the evidence suggests large health returns to healthcare expenditure at low levels of baseline expenditure. This implies that international resources channeled through development assistance for health, if suitably targeted and managed, have the potential of drastically reducing global inequalities in living standards.

# Cross-country Health Outcomes

# Life Expectancy

# Context

One way to assess health in a population is by looking at mortality data. Life expectancy is the most commonly used measure to aggregate mortality data in order to describe a population’s health. It measures how many years, on average, a person is expected to live based on current age and sex-specific death rates.

Further in-depth information on life expectancy, including definitions, data sources, historical trends and much more, can be found in our dedicated entry on Life Expectancy.

# How has cross-country life expectancy changed in the long-run?

The following visualization summarises available life expectancy data over the last few centuries. The estimates from the UK – the country for which we have the longest time-series – show that life expectancy before 1800 was very low, but since then it has increased drastically. We can see that in less than 200 years the UK doubled life expectancy at birth. And the data shows that similarly remarkable improvements also took place in other European countries during the same period.

The chart below also shows large historical changes in life expectancy estimates for other countries. Notice, for example, that a century ago life expectancy in India and South Korea was as low as 23 years – and a century later, life expectancy in India almost tripled, and in South Korea almost quadrupled.

You can switch to the map view in this visualization by clicking on the corresponding tab, in order to compare life expectancy across countries. The map shows that, despite long-run cross-country convergence, there are still huge differences between countries: people in some sub-Saharan African countries have a life expectancy of less than 50 years, compared to 80 years in countries such as Japan.

The increase in life expectancy happened to a significant extent because of changing mortality patterns at a young age, but this was not the only reason: life expectancy increased for people at all ages.

# Have all countries in the world experienced increasing life expectancy?

The visualization below shows the cumulative share of the world population (horizontal axis) against the corresponding life expectancy (vertical axis) at different points in time (colored lines). You can think of this as a bar-chart of life expectancy by country, but where countries have been ordered by life expectancy, and the width of each bar has been drawn proportional to each country’s share of the world population.

For 1800 (red line) we see that the countries on the left – including India and also South Korea – have a life expectancy of around 25 years. And on the very right we see that in 1800 no country had a life expectancy above 40 (Belgium had the highest life expectancy with just 40 years).

In 1950 life expectancy in all countries was higher than in 1800, but we can see that inequality grew substantially. This happened because very large improvements in health outcomes took place in some countries (mainly the richer countries in Europe and North America), while others (notably India and China) made only little progress.

In 2012 (green line), we can see again an improvement in life expectancy across all countries; yet interestingly, improvements in this last period implied a reduction in inequality. This happened through very large recent improvements in life expectancy across developing countries.

The conclusion is that the world developed from equally poor health in 1800, to great inequality in 1950, and back to more equality today – but equality at a much higher level.

# Life expectancy of the world population, 1800, 1950 and 20121


# Inequality in life expectancy within countries decreased hugely in the long run

We have already pointed out that recent improvements in life expectancy across developing countries have implied substantial reductions in global health inequalities. But has inequality in life expectancy also implied large within-country reductions in health inequality?

This question can be addressed by measuring inequality in the distribution of years of life within countries, in the same way that we measure, for example, inequality in the distribution of incomes. The idea is to estimate the extent to which a small share of a country’s population concentrates a large ‘stock of health’, hence living much longer than most of the population in the same country.

The following visualization presents estimates of inequality of lifetimes as measured by the mortality Gini coefficient. A high Gini coefficient here means a very unequal distribution of years of life – that is, large within-country dispersion around the average number of years that people live. These estimates are from Peltzman (2009)2, where you can find more details regarding the underlying sources and estimation methodology. For an analogous discussion of inequality in the context of incomes, see our entry on Income Inequality.

As can be seen in the chart below, inequality in health outcomes has also fallen within countries.

To place these numbers in perspective, we can compare the changes in mortality Gini coefficients with contemporaneous changes in income Gini coefficients. Peltzman (2009) notes that the numerical decline in mortality Ginis seems to have exceeded the decline of income Ginis in the last century or so – which suggests that there has been a larger contribution to social equality from improved longevity than from income redistribution.

# Child mortality

# Context

In the preceding section we studied life expectancy at birth as a key measure of aggregate health in a population. This measure provides an overview of health outcomes for the average person in a country. In this section we focus on health outcomes specifically for children.

An analysis of mortality for children provides important information regarding aggregate health in a country, because the first years of life are characterised by important health-related challenges. Consequently, life expectancy increases substantially conditional on surviving the first years of life. Indeed, as we shall show, an important part of the gains in life expectancy at birth are precisely due to large reductions in child mortality.

Child mortality is usually measured as the probability per 1,000 live births that a newborn baby will die before reaching age five under current age-specific mortality patterns.

Further in-depth information on child mortality, including definitions, data sources, historical trends and much more, can be found in our dedicated entry on Child Mortality.

# How has cross-country child mortality changed in the long-run?

The interactive time-series plot below shows how child mortality has changed over the long run. As we can see, child mortality in industrialised countries today is below 5 per 1,000 live births – but these low mortality rates are a very recent development. In pre-modern countries child mortality rates were between 300 and 500 per 1,000 live births. In developing countries the health of children is quickly improving – but child mortality is still much higher than in developed countries.

A second interesting feature of the trends depicted in this chart is that there are many sharp ‘spikes’ in the 19th century. This is partly because the data quality is improving over time, but also because health crises were more frequent in pre-modern times. The decline of crises is an important aspect of improving ‘living standards’. In our entry on food price volatility you find empirical evidence of how frequent food crises were. In the following plot you can see what these and other crises – epidemics or wars, for example – meant for the health of the population.

You can switch to the map view in this visualization by clicking on the corresponding tab, in order to compare child mortality estimates across countries and time. The map reinforces what we already noted: all countries have reduced child mortality in the long run, but there are still large differences between developed and developing countries.

# Are developing countries catching up with low child mortality rates in developed countries?

The fact that developing countries have made particularly fast improvements to reduce child mortality in the last fifty years, has meant that cross-country gaps have been closing. The following visualization shows child mortality estimates by income level of countries for the period 1960-2012. We can see a clear downward trend across all groups. And since high-income countries have seen the slowest progress (due to their already high health outcomes) we can see that the gap between these countries and the rest of the world has been narrowing. Upper middle income countries are in fact close to catching up.

Nevertheless, the latest figures show the important challenges that remain: low-income countries have, on average, child mortality rates that are still more than ten times higher than in high-income countries. The remaining gap is still large.

# The five most lethal infectious diseases over time

The chart below focusses on the five most lethal infectious diseases. It shows the number of child deaths caused by these diseases from 1990 onwards.

Deaths caused by malaria and HIV/AIDS were rising over the 1990s. From 2005 onwards the deaths caused by each of these diseases is declining.

The most important disease referred to as ‘lower respiratory infections‘ in the visualisation is pneumonia.

# Maternal mortality

# Context

Similarly to child mortality, maternal mortality provides important information regarding the level of health in a country.

Maternal mortality is usually defined as the number of women dying from pregnancy-related causes while pregnant, or within 42 days of pregnancy termination (typically expressed as a ratio per 100,000 live births).

Further in-depth information on maternal mortality, including definitions, data sources, historical trends and much more, can be found in our dedicated entry on Maternal Mortality.

# Maternal mortality reduced in the long run

The visualizations above highlight the drastic long-term improvements that countries have made to reduce child mortality. But have these health improvements also materialized for mothers?

The chart below shows long-run maternal mortality estimates for a selection of mainly high income countries. We can see that a hundred years ago, out of 100,000 child birth, between 500 and 1,000 ended with the death of the mother. This means every 100th to 200th birth led to the mother’s death. Since women gave birth much more often than today, the death of the mother was a common tragedy. Today, these countries have maternal mortality rates close to 10 per 100,000 live births.

The decline of maternal mortality to around 10 per 100,000 births can be attributed to our modern scientific understanding of the causes leading to maternal mortality. In fact, a common reason for mothers to die was puerperal fever (or childbed fever), which was caused by unhygienic conditions leading to infections in the mothers’ genital tract during childbirth. It was the physician Ignaz Semmelweis who first noticed the link between hygiene and the survival of mothers in the middle of the 19th century, but it was only until the germ theory of disease became known that appropriate practices became widely adopted.

The visualization below also shows that different countries have achieved progress in maternal mortality at different points in time. The decline of maternal mortality in Finland, for example, began in the middle of the 19th century and didn’t reach today’s low level until more than a century later. Malaysia in contrast achieved this progress in only a few decades.

Maternal mortality ratio (per 100,000 live births) over the long run3

Full screen view Download Data

You can also download a static image here:


# How do countries around the world currently compare in terms of maternal mortality?

Recent data on maternal mortality shows improvements around the world. The following interactive visualization presents a world map of maternal mortality rates for the period 1990-2013. You can switch to the chart view to explore country-specific trends.

As before, the conclusion here is that despite recent widespread improvements in the developing world, there are huge challenges ahead: in sub-Saharan Africa more than 500 mothers die per 100,000 live births. This is more than 60 times higher than the figure for countries in the European Union.

# Burden of disease

# Context

In the preceding sections we discussed health outcomes, as measured only from data on mortality. Here we discuss a related, but different measure of health that accounts for the incidence and burden of disease.

The most common way to measure the burden of disease is to estimate the number of ‘lost’ years due to poor health – the so-called loss in Disability Adjusted Life Years, or DALYs. This variable is calculated as the sum of years of potential life lost due to premature mortality, and the years of productive life lost due to disability. As such, the measure of a country’s DALYs extends the notion of life expectancy, in the sense that it incorporates both the prevalence of different diseases or risk factors, and the relative harm they cause. One DALY lost can be thought of as one lost year of ‘healthy’ life. You can read more about the definition and calculation of DALYs in the technical report WHO methods and data sources for global burden of disease estimates.

Further in-depth information on burden of disease can be found in our dedicated entry on Burden of Disease.

# How many healthy life years are lost around the world due to diseases and disabilities?

The following visualization presents a map of Disability Adjusted Life Years. The source for the data is the Global Burden of Disease Project, which estimates that in 2012, around 2.8 billion healthy live years were lost to premature death or compromised by disability. The map shows that a large part of these lost years of healthy lives are concentrated in sub-Saharan Africa.

In a recent scientific article, GBD (2015)4 provide the following analysis of this data: “Ageing of the world’s population is leading to a substantial increase in the numbers of individuals with sequelae of diseases and injuries. Rates of YLD [(years lost due to disability)] are declining much more slowly than mortality rates. The non-fatal dimensions of disease and injury will require more and more attention from health systems. The transition to non-fatal outcomes as the dominant source of burden of disease is occurring rapidly outside of sub-Saharan Africa.”

# How do different health conditions contribute towards the burden of disease?

The following visualization – produced by the Institute for Health Metrics and Evaluation (IHME) – presents a breakdown of burden-of-disease estimates for selected countries. A dedicated IHME website provides a fascinating interactive tool to explore all available data on burden of disease worldwide.

As the chart below shows, different conditions contribute differently to health outcomes depending on the specific country and gender. While in Angola there are clear challenges relating to HIV/AIDS, diarrhoea and malaria, in countries such as the US or Germany, the biggest challenges relate to cardiovascular and respiratory disease and cancer (the main cause of ‘neoplasms’).

# Burden of disease by cause, country, and gender (2013 estimates) – produced by IHME Viz Hub


# Incidence of Disease

# Context

The data from the Global Burden of Disease Project, discussed above, shows that there are still important challenges regarding certain diseases, notably HIV/AIDS and malaria. Here we discuss trends showing how the fight against these diseases is evolving.

The most common way of measuring the evolution of diseases is to estimate the number (and frequency) of deaths caused by the diseases; as well as the number of new people suffering from them.

Further in-depth information can be found in our entries dedicated to HIV/AIDS and Malaria.

# How is the world progressing in the fight against HIV/AIDS?

The 1990s saw a large increase in the number of people infected with HIV and dying of AIDS. At the height of the AIDS crisis, almost 3.7 million people were diagnosed with HIV per year. However, after 1997 the number of new diagnoses began to slow down; and eventually around 2005, the annual number of deaths from AIDS began to decrease. As a consequence, the number of people living with HIV is beginning to plateau.

The following chart shows these global trends. According to the UNAIDS 2012 report, in most regions of the world the number of new infections has decreased or stayed fairly steady since 2001. However, the number of new HIV infections has actually increased in the Middle East and North Africa.

Full screen view Download Data

# How is the world progressing in the fight against malaria?

Since the beginning of the 21st century, the WHO has published global estimates of the number of people dying from malaria. The following visualization presents these estimates. As we can see, in these 15 years the global death toll has been cut in half: from 839,000 deaths in 2000 to 438,000 in 2015.

Africa is the world region that is most affected by malaria. In 2015, the African continent held 9 out of 10 malaria victims (click on the button labeled ‘Relative’ to see this). Importantly, however, Africa is also the world region that has achieved most progress: from 2000 to 2015, African deaths from malaria were reduced from 764,000 to 395,000.

The following visualization shows past and current malaria prevalence. It shows that malaria was formerly prevalent in many other world regions. In the Western US, Europe, Northern Australia, and much of Asia malaria was once very common.

World map of past and current malaria prevalence – World Development Report (2009)6

World Map of past and current Malaria prevalence – World Development Report (2009)

# Cross-country Health Determinants

# The ‘production’ of health outcomes

Economists often think of health as a ‘stock’ variable relating to the absence of illness or injury. As such, health is often thought of as an individual characteristic beginning with inherited conditions (e.g. genetics) and evolving over time as a function of other inputs, such as environmental conditions and medical care.7 In general, the inputs for ‘producing health’ fall under the following broad categories:

  • Biology and genetics (e.g. inherited conditions)
  • Public policy and regulation (e.g. vaccination campaigns)
  • Healthcare (e.g. timely treatment and diagnosis of disease)
  • Habits (e.g. smoking)
  • Social and environmental factors (e.g. exposure to crime, pollution)

# Health returns to healthcare investment

# Context

Arguably the most important input to health is healthcare. Here we study cross-country evidence of the link between aggregate healthcare consumption and production, and health outcomes.

The most common way of measuring national healthcare consumption and production is to estimate aggregate expenditure on healthcare (typically expressed as a share of national income).

More information about the provision of healthcare can be found in our entry on Financing Healthcare.

Healthcare is one of the most important inputs to produce health. The following visualization shows the cross-country relationship between life expectancy at birth and healthcare expenditure per capita. This chart shows the level of both measures in the first and last year for which data is available (1995 and 2014 respectively). The arrows connect these two observations, thereby showing the change over time for all countries in the world. As it can be seen, countries with higher expenditure on healthcare per person tend to have a higher life expectancy. And looking at the change over time, we see that as countries spend more money on health, life expectancy of the population increases.

Notice that the relationship in this chart seems to follow a pattern of ‘diminishing returns’: the increase in life expectancy associated with an increase in healthcare expenditure decreases as expenditure increases. This means the proportional highest gains are achieved in countries with low baseline levels of spending. This pattern is similar to that observed between life expectancy and per capita income.

The countries are color-coded by world region, as per the inserted legends. Many of the green countries (Sub-Saharan Africa) achieved remarkable progress over the last 2 decades: health spending often increased substantially and life expectancy in many African countries increased by more than 10 years. The most extreme case is Rwanda, where life expectancy has increased from 32 to 64 years since 1995 (which was one year after the Rwandan genocide). The graph also shows that the African countries that suffered the most under the HIV/AIDS epidemic – Lesotho, Swaziland, and South Africa – experienced a decline of life expectancy from which they have not yet recovered.

The two most populous countries of the world – India and China – are emphasized by larger arrows. It is interesting to see that in 1995 China achieved good health outcomes at comparatively low levels of health spending.

The association between health spending and increasing life expectancy also holds for rich countries in Europe, Asia, and North America in the upper right corner of the chart. The US is an outlier that achieves only a comparatively short life expectancy considering the fact that the country has by far the highest health expenditure of any country in the world.

You can also explore this relationship between healthcare spending and child mortality in an interactive visualization.


The following visualization presents the relationship between child mortality and healthcare expenditure per capita. Global data on health expenditure per capita is available since 1995 and in this chart we show the level of both measures in the first and last year for which data is available. The arrows connect these two observations, thereby showing the change over time for all countries in the world. We can see that child mortality is declining as more money is spent on health.

Focusing on changes over time, we can see a particularly striking fact: while there is huge inequality in levels – child mortality in the best-performing countries is almost 100-times lower than in the worst – inequality in trends is surprisingly stable. Specifically, if you look at the paths over time it is surprising how little heterogeneity there is between very different countries in the world. No matter whether it is a rich country in Europe or a much poorer country in Africa, the proportional decline in child mortality associated with a proportional increase in health expenditure is remarkably similar.

The visualization also shows the very high global inequality in health spending per capita that is still prevalent today. In the Central African Republic only 25 international-$ are spent per capita while on the other end of the distribution, in the US, 9,403 international-$ are spent. The ratio between the two countries is 376; on average Americans spent more on health per day than a person in the Central African Republic spends in an entire year. This is a very large gap, considering that International-$ are adjusted for price differences between countries – if price differences were not taken into account, and the spending would have been expressed in US-$ by simply using the exchange rate between the different currencies, the difference would be even larger.

You can also explore this relationship between healthcare spending and child mortality in an interactive visualization.


At a cross-country level, the strongest predictor of healthcare spending is national income (you can find more about measures of national income in our entry on GDP data). The following visualization presents evidence of this relationship. The correlation is striking: countries with a higher per capita income are much more likely to spend a larger share of their income on healthcare. In a seminal paper, Newhouse (1977)8 showed that aggregate income explains almost all of the variance in the level of healthcare expenditure (specifically, Newhouse (1977) showed that among a group of 13 developed countries, GDP per capita explained 92 percent of the variance in per capita health expenditure). Other studies have confirmed that this strong positive relationship remains after accounting for additional factors, such as country-specific demographic characteristics.9 Although in strict sense this result cannot be interpreted causally – since countries differ in many unobservable aspects that relate both to income and healthcare spending –, more sophisticated econometric models dealing with the issue of ‘omitted variables’ seem to confirm that the effect of per capita GDP on expenditure is clearly positive and significant (for a technical discussion of this conclusion see Culyer and Newhouse (2000)).10

# The finances of healthcare

# Context

In the preceding section we provide evidence supporting the fact that there are potentially large health returns to healthcare investments. Here we explore empirical evidence regarding how healthcare investments are financed around the world.

In depth information on healthcare expenditure and finances, including definitions and data sources, can be found in our entry on Financing Healthcare.

# When did high-income countries start expanding their healthcare systems?

The earliest data on financing of healthcare dates back to the late 19th century – this is when many European countries began officially establishing healthcare systems through legislative acts. The following visualization presents public expenditure on healthcare as a percent of GDP for a selection of high-income countries for the period 1880-1994 using data from Tanzi and Schuknecht (2000)11 and Lindert (1994)12. We’ve included eight countries for reference, but you can add other countries to the same chart by clicking on the corresponding option. As it can be appreciated, public expenditure on healthcare in all of these countries followed roughly similar paths; and this is despite early differences in their healthcare regimes (for a detailed account of the institutional evolution of healthcare regimes in these countries see the report prepared by CESifo DICE).

# How quickly can healthcare coverage expand?

As noted above, european countries pioneered the expansion of healthcare systems in the first half of the twentieth century. The following visualization, from the Human Development Report (2014), places the achievements of these countries in perspective. Specifically, the following graph plots healthcare protection coverage for a selection of countries during the period 1920-2010. As we can see, France, Austria and Germany increased healthcare coverage in the years 1920-1960, while Spain, Portugal and Greece did it later, in the years 1960-1980. Interestingly, however, this graph also shows some notable examples of countries that expanded healthcare coverage much later, but much more quickly. In particular, China, Rwanda and Vietnam built health protection systems in the 21st century, almost from scratch, achieving near universal coverage in only a decade. These examples show that healthcare protection can be expanded very quickly, and not only at low baseline levels of coverage.

# Evolution of health protection coverage as a percentage of total population, selected countries – Figure 4.2 in the Human Development Report (2014)13


# Has aggregate global expenditure on healthcare increased in the last couple of decades?

In the last two decades total aggregate global expenditure on healthcare has been relatively stable, albeit with a slow steady increase. The following visualization uses data from the World Health Organisation (published in the World Development Indicators) to show this. Total healthcare spending as a percent of GDP has seen an overall increase of roughly 1.5 perceptual points over the last two decades, with a relatively constant share of resources coming from the public sector.

# How has healthcare expenditure evolved across different countries?

Global trends in healthcare expenditure mask a great deal of heterogeneity. The following map shows how total expenditure on healthcare has changed across the world. Clicking on the ‘chart’ tab in this visualization allows you to plot country-specific series. Although trends are not very pronounced for most countries, there are clear exceptions (e.g. Ecuador). And there are strong differences in levels.

World-wide cross-country data also shows that, while the public share of resources used to finance healthcare has been stable in the aggregate, there is substantial underlying heterogeneity in this respect. The first visualization below presents public spending on healthcare as a share of total healthcare spending by country (again, with our usual ‘chart’ and ‘map’ views) – it shows large differences even among relatively homogeneous industrialized market economies. The second visualization presents the same variable (public spending on healthcare as a share of total healthcare) but aggregating countries by income levels (World Bank classification) – this shows that there have been substantial underlying shifts across regions. More specifically, in countries in the low-income and upper-middle-income brackets, there has been a marked increase in the share of public resources used to finance healthcare; in high-income countries there is no clear trend.

# How important is out-of-pocket spending around the world?

In many countries an important part of the private funding for healthcare takes the form of ‘out-of-pocket’ spending. This refers to direct outlays made by households, including gratuities and in-kind payments, to healthcare providers. The following visualization presents out-of-pocket expenditure on healthcare by country (as percent of total healthcare expenditure). As it can be seen, in high-income countries these outlays tend to account for only a small fraction of expenditure on healthcare (e.g. France, where the share was always below 8% in the entire series 1995-2013); while in low-income countries, they account for the majority of funding (e.g. Afghanistan, where the share of out-of-pocket expenditure reached 87.7% in 2002). Many countries have followed a clear path in the direction of reducing this type of expenditures (particularly in the developing world), yet some countries have moved in the opposite direction (Russia is a notable case in point, with a threefold increase in the share of out-of-pocket expenditure in the last decade).

# Public policy and regulation

# Context

Public policy has the scope for affecting health outcomes. We provide here some concrete examples.

Further in-depth information can be found in our entries dedicated to Vaccination, Eradication of Disease, and Healthcare Finances.

# The Affordable Care Act in the US is improving healthcare coverage

In June 2012 the US introduced the Affordable Care Act (ACA) – a legal reform aiming to improve the accessibility, affordability, and quality of healthcare.14 This was, to a great extent, motivated by the fact that the share of uninsured individuals in the US is large and has remained virtually constant during decades of substantial growth in expenditure. The following visualization shows the percentage of individuals in the US without health insurance for the period 1963-2015. As we can see there are two marked changes in the trends separated by a long period of remarkable stability: there is a sharp drop in the number of uninsured in 1965 with the creation of Medicare and Medicaid, then relatively little change for decades, and then another sharp drop in 2012 with the introduction of the ACA. Disaggregated data shows that those states that decided to expand their Medicaid programs saw larger reductions in their uninsured rates from 2013 to 2015, especially when those states had large uninsured populations to start with (see Obama (2016).15 for further discussion of these figures). While strictly speaking this is only descriptive evidence – we cannot know what would have happened to the trends without the introduction of the ACA –, it seems reasonable to assume that the observed improvements in healthcare coverage are indeed a consequence of the ACA.

# Vaccination campaigns improve the incidence and burden of diseases

The rotavirus is the most common cause of diarrhea and causes 527,000 childhood deaths annually (2011 estimates). Many more become sick and are hospitalized.16 Mexico introduced the rotavirus vaccination between 2006 and 2007, and the following graph shows how quick and successful the countrywide vaccination was. According to the study, diarrhea mortality for children under the age of 5 fell by 56% over three years.

The graph shows the seasonal pattern of the disease and how the lifesaving effect of the vaccine affected different age groups.

Richardson, Parashar, and Patel (2011) - Number of Diarrhea-Related Deaths VACCINE

Data comparing the prevalence of diseases before and after the introduction of different vaccinations in the US can be found in Roush and Murphy (2007)18. Below we provide a table summarizing their findings. As it can be seen, in most cases the reduction of cases has been close to 100%.

# Reduction of number of cases for vaccine-preventable diseases in the United States before and after the introduction of the vaccine – Roush and Murphy (2007)19

DiseaseNumber of Annual Prevaccine CasesNumber of Annual Postvaccine CasesReduction of Cases after Vaccine Introduction (in %)
Poliomyeltis, acute19,7940100%
Poliomyeltis, paralytic16,3160100%
Congenital rubella syndrome152199.30%
Hepatitis A117,33315,29887%
Acute hepatitis B66,23213,16980.10%
Invasive (Haemophilus influenza type b)20,000<50>99.8%
Invasive (pneumococcal disease)63,06741,55034.10%

# Vaccination campaigns can eradicate diseases

Today smallpox is a disease of the past. The following map shows when smallpox was eradicated from each country. Parts of Africa, Southeast Asia, the Middle East and Brazil were the last places to have smallpox eradicated. But smallpox was eradicated from other parts of the world, especially Europe, far earlier. This suggests that slow eradication in some parts of the world was due primarily to weaker control systems and ineffective vaccination strategies.

# Year in which smallpox ceased to be endemic in each country – Max Roser20

# Coverage of essential health services is increasing

Essential health services cover a range of basic health provisions, such as detection and treatment of tuberculosis (TB), HIV treatment, family planning, sanitation and DTP3 immunization. The following chart from the WHO shows global coverage trends across the key tracer indicators of essential health services from 2000-2015.

In general, we see an overall increase in global coverage since 2000. However, some health services see a much steeper rise—these are often strongly linked to particular funding and resource efforts stemming from large public policies and coordinated civil-society interventions. Global coverage in tracer interventions against HIV, TB and malaria have shown the most significant increase—this is a strong reflection of the large increase in resources supplied through The Global Fund and the President’s Emergency Plan for AIDS Relief (PEPFAR).

Immunization (DTP3) coverage has also seen a considerable increase since 2000. This rise has been even more significant across particular regions. In Africa, for example, DTP3 coverage has increased by almost 50 percent since 2000—again, this is a strong reflection of increased funding in these areas from the global vaccine alliance (GAVI), the United Nations agency and additional donor funds.

Increases in coverage of maternal and child health services have typically been slower than that of HIV, TB, malaria and DTP3, but have still shown a steady increase since 2000. Like DTP3, this level of increase varies substantially by region; the World Bank reports that antenatal care coverage has increased by 30–60 percent in regions outside of Europe and the Americas.21

# Medicine availability in developing countries remains a barrier to affordable medicine access

There are several factors necessary in ensuring everyone has access to essential medicines—first, they must be available, and secondly they must be affordable.

In the chart below we see levels of medicine availability (from 2001-2007) within the public sector (blue line), and private sector (yellow line) across thirty developing countries. These are shown as the mean availability by region, with minimum and maximum values also shown.

There are several important trends to highlight. Firstly, medicine availability within the public sector in developing countries is low—only 35 percent on average across the 27 countries reported here. Availability within the private sector is consistently higher, however, this is also not guaranteed—on average, more than one-third of private providers had adequate access to essential medicines.23

This has important implications for access to essential medicines—especially for the poorest. Most health facilities in the public sector offer medicines at low-cost or free of charge, so are essential in healthcare provision for the poor. When medicines are not available in the public sector, individuals must try to access them privately; these are typically more expensive and unaffordable for many. As we discuss in our entry on Financing Healthcare, price-sensitivity is so critical in low-income countries, that small costs for important healthcare products make a vast difference in demand.

# Availability of selected medicines in public and private health facilities between 2001 and 2007 (%)24

# Main data sources

The World Development Indicators (WDI), published by the World Bank, are the main source of up-to-date cross-country data on life expectancy, child mortality and maternal mortality. Other more specialised data sources are listed and discussed in our entries on Life Expectancy and Child Mortality.

The main source of data on international healthcare expenditure is the World Health Organisation (WHO), more specifically the global health expenditure database. This is the same data published by the World Bank (World Development Indicators) and Gapminder. It is also the source of the health expenditure tables in the World Health Statistics Report and the WHO Global Health Observatory; and it is used as an input to the Development Assistance for Health Database from the IHME.25 You can read more about measurement, data quality and further details about available sources in the last two sections of our entry on Financing Healthcare.


  1. The data on life expectancy is taken from Version 7 of the dataset published by Gapminder. The data on the population of each country is also taken from Gapminder.

    The included world population in 1800 is 1,036 billion. In 1950 it is 2,72 billion. And for 2012 it is the life expectancy of that year and the population measures refer to 2010 (7 billion people are included in this analysis).

  2. Sam Peltzman, “Mortality Inequality”, Journal of Economic Perspectives 23(4), Fall 2009: 175-19. Online here.

  3. The visualized data is taken from Claudia Hanson (2010) – Gapminder Documentation 010 – Documentation for Data on Maternal Mortality Historical information compiled for 14 countries (up to 200 years). The accompanying documentation is online here.

    If data is given for time brackets of more than a year, then observations have been plotted at the midpoint of the bracket.

    Sri Lanka, which is included in the original source, was not included here as data before 1950 only refers to women in reproductive age (15-49).

  4. Vos, T., Barber, R. M., Bell, B., Bertozzi-Villa, A., Biryukov, S., Bolliger, I., … & Duan, L. (2015). Global, regional, and national incidence, prevalence, and years lived with disability for 301 acute and chronic diseases and injuries in 188 countries, 1990–2013: a systematic analysis for the Global Burden of Disease Study 2013. The Lancet, 386(9995), 743-800.

  5. The source of the data is the extensive AIDSinfo Online Database.

  6. This is taken from World Bank (2009) – World Development Report (2009) – Part I: Reshaping Economic Geography. Washington, DC: World Bank. Online here.


    The underlying sources reported are: Malaria Atlas Project (MAP), Kenyan Medical Research Institute, and University of Oxford.

  7. More precisely, the economics literature treats health as a ‘durable capital stock’ that yields an output of ‘healthy time’. The main idea in such models is that individuals inherit an initial amount of this stock that depreciates with age and can be increased by investment. This conceptualization gives rise to a household production function model of consumer behavior that can be employed to account for the gap between health as an output and medical care as one of many inputs into its production. For more details see Culyer, A. J., & Newhouse, J. P. (Eds.). (2000). Handbook of health economics. Elsevier.

  8. Newhouse, J.P. (1977), “Medical care expenditure: a cross-national survey”, Journal of Human Resources 12:115–125.

  9. Interestingly, there are important institutional variables that are also significantly correlated with healthcare expenditure after controlling for income. For example, the use of primary care “gatekeepers” seems to result in lower health expenditure. And lower levels of health expenditure also appear to occur in systems where the patient first pays the provider and then seeks reimbursement, compared to other systems. For more information see page 46 in Culyer, A. J., & Newhouse, J. P. (Eds.). (2000). Handbook of health economics. Elsevier.

  10. Culyer, A. J., & Newhouse, J. P. (Eds.). (2000). Handbook of health economics. Elsevier.

  11. Tanzi, Vito, and Ludger Schuknecht. Public spending in the 20th century: A global perspective. Cambridge University Press, 2000

  12. Lindert, Peter H. “The rise of social spending, 1880-1930.” Explorations in Economic History 31, no. 1 (1994): 1-37.

  13. The source given for the data corresponds to Figure 1 in ILO, (2011), Social Protection Floor for a Fair and Inclusive Globalization. Report of the Advisory Group chaired by Michelle Bachelet convened by the ILO with the collaboration of the WHO. Geneva: International Labour Office. Available online here.

  14. See White, C. (2010). The health care reform legislation: an overview. The Economists’ Voice, 7(5) for a non-specialist overview of the ACA’s major provisions, their logic, and the federal budgetary implications.

  15. Obama, B. (2016). United States health care reform: progress to date and next steps. JAMA.

  16. Both the virus and the vaccine are described in Wikipedia

  17. Richardson, Parashar, and Patel (2011) – Childhood Diarrhea Deaths after Rotavirus Vaccination in Mexico. In New England Journal of Medicine, 365, 8, 772–773. Online here.

  18. Roush and Murphy (2007), Historical comparisons of morbidity and mortality for vaccine-preventable diseases in the United States. Journal of the American Medical Association, 298, 18, 2155-2163.

  19. These data are taken from Roush and Murphy (2007) – Historical comparisons of morbidity and mortality for vaccine-preventable diseases in the United States. In the Journal of the American Medical Association, 298, 18, 2155–2163.

    The vaccines against the diseases up till ‘Tetanus’ were vaccines licensed or recommended before 1980. The vaccines against the last 5 diseases were only licensed or recommended between 1980 and 2005. There is a nice poster that shows this information to download here. – the author is user Kirkayak from this reddit thread.

  20. I have taken the data from a series of maps in chapter 8 in F. Fenner, D. A. Henderson, I. Arita, Z. Jezek, I. D. Ladnyi (1988) – Smallpox and its Eradication. World Health Organization (WHO) 1988. The book is online here at the WHO website.

    The only data not taken from the maps but from the text are the data for Canada, USA, Australia and New Zealand: For Canada the authors reported that “endemic smallpox was eliminated by 1944”, for the USA only that it was eliminated “the latter half of the 1940s” (I chose 1948 for the visualization). Dates for the last outbreaks of smallpox in Australia (1917) and New Zealand (1914) are reported in the text – in both countries smallpox has always been rare.
    The dates for Madagascar and Namibia are not exactly known – the authors only report that smallpox was eradicated in Madagascar before 1918 and for Namibia before 1955 (so I chose these years for eradication).
    Countries are shown in their current borders – successor countries of Yugoslavia, the USSR and the Sudan are assigned the eradication date of these states: 1925 for Yugoslavia, 1936 for the USSR, and 1972 for the Sudan.

  21. WHO (2017). World Health Statistics 2017: Monitoring health for the SDGs. World Health Organization. Available online.

  22. This chart corresponds to Figure 1.5 in WHO (2017). World Health Statistics 2017: Monitoring health for the SDGs. World Health Organization. Available online. The full names of the variables are as follows: tuberculosis detection and treatment; Insecticide-Treated Mosquito Nets use; Antiretroviral Therapy among people living with Human Immunodeficiency Virus (HIV); International Health Regulations; antenatal care 4 visits; improved sanitation; family planning; tobacco non-use; non-raised blood pressure; Diphtheria-tetanus-pertussis vaccine.

  23. United Nations (2008). Delivering on the Global Partnership for Achieving the Millennium Development Goals. MDG Gap Task Force Report 2008. Available online.

  24. Figure 17 in United Nations (2008). Delivering on the Global Partnership for Achieving the Millennium Development Goals. MDG Gap Task Force Report 2008. Available online.

  25. IHME collects budget, revenue, and expenditure data for 39 global health channels in order to estimate flows of development assistance for health. They use WHO estimates to then calculate how these flows compare to total expenditure in source and recipient countries.